História da química

SUMÁRIO

I – Introdução……………………………………….p. 2

II – Desenvolvimento…………………………….p. 3

2.1 – Conceito…………………………………p. 3

2.2 – História…………………………………..p.3

2.3 – Ramos da química…………………..p. 6

2.4 – Anexo…………………………………..p. 16

III – Conclusão……………………………………p. 17

IV – Bibliografia…………………………………p. 18

I – Introdução

Este trabalho tentará mostrar para o leitor um vasto conhecimento sobre química, analisando detalhadamente a história e os ramos da química.

Química

II – Desenvolvimento

2.1 – Conceito

O desenvolvimento da química, mais talvez do que o das outras ciências, teve caráter profundamente experimental: durante centenas de anos acumularam-se conhecimentos empíricos sobre o comportamento das substâncias, tentando-se organizar todas essas informações num corpo doutrinário. Todavia, só a partir do séc. XIX quando a soma de conhecimentos se tornou ampla e abrangente, foi possível estabelecer um vínculo teórico para a interpretação dos fatos e criar uma verdadeira teoria química.

2.2 – História

O desenvolvimento material da civilização, tanto no oriente, como no ocidente, foi acompanhado do desenvolvimento de procedimentos de natureza química para obtenção de substâncias ou para sua purificação. Processo de destilação, de fermentação, de redução e de extração são conhecidos da civilização do norte da África, do Oriente médio, da China e da Índia. O fato químico, porém, talvez devido à própria complexidade, não era objeto de investigação, tal como ocorreu com o fato físico, o que não impediu, todavia, a formação de respeitável corpo de conhecimentos práticos.

A metalurgia do cobre (e do estanho, do ouro, da prata) era bem conhecida, como também a do ferro. A técnica de fabricação do vidro e de sua coloração era razoavelmente dominada. Sabia-se falsificar a aparência de um metal para fazê-lo passar por nobre; utilizavam-se soluções de polissulfetos, obtidas a partir de enxofre e carbonato.

Esses conhecimentos passam aos árabes e retornam à Europa, por volta do séc.XIV. O século XVI encontra, então, sólido terreno para desenvolver uma química técnica apurada, com procedimentos e métodos bastante semelhantes aos atuais. Aparece a preocupação quantitativa, e os praticantes ( farmacêuticos, metalurgista e mineralogistas ) começam a ponderar as substâncias reagentes. A balança instala-se na química, para se tornar instrumento decisivo de investigação aprofundada de relações.

A análise de uma obra capital na história da química da idéia de sua prática no século XVI. Em 1556 surge, aparentemente depois de mais de vinte anos de preparação, o livro de Georg Bauer (1494-1555), conhecido pelo nome latinizado de Georgis Agricola – De Re Metallica – manual prático de metalúrgica e química, cuja popularidade não arrefeceu durante mais de um século. É surpreendente a soma de informações nele contidas. Ao lado d indicações sobre a técnica de exploração de minas ( levantamento das jazidas, cortes no terreno, escavação de galerias, esgotamento de água, sustentação do terreno, transporte do minério), Agricola dá informações e receitas, detalhadas e precisas, sobre os processos de obtenção de metais.

Descreve a metalúrgica do chumbo, do bismuto, do ferro, do cobalto, do cobre, do ouro, da prata, do estanho, do mercúrio, do antimônio. A obtenção do enxofre, do óxido de arsênio. A obtenção e/ou do uso de grande número de compostos e ligas: alúmen, álgamas, ácido nítrico, bronze, latão, óxidos de chumbo, ácido sulfúrico, cloreto de sódio, cloreto de amônio, vinagre e etc. O extraordinário no livro – a refletir certamente evolução técnica cultural – são as objetidade e a precisão das descrições, feitas com o intuito de serem úteis e funcionais aos funcionários aos usuários. Não se discutem, e é isso outro traço característico da obra, nem teorias e hipóteses da constituições das substâncias.

Sobre essa sólida base, continua a evolução do conhecimento científico das substâncias, no século XVII. É especialmente notável o aumento das informações sobre as propriedades terapêuticas das substâncias, desenvolvido (a meio de especulações teóricas nebulosas) pelos iatroquímicos. São, à época, os farmacêuticos os ativos pesquisadores da química, secundados pelos médicos; não a ainda a profissão de químico. Dessa época data o conhecimento preciso do ácido sulfúrico e do acido clorídrico.

O alemão Johann Rudolf Glauber (1603 ou 1604 – 1668 ou 1670) faz do sulfato de sódio quase de uma panécia (até hoje é ele conhecido como sal de Glauber). O.séc. XVIII é época de vigoroso desenvolvimento do conhecimento empírico. O número de metais conhecidos com segurança amplia a listagem agrícola: platina, níquel, manganês, moblidênio, telúrio, ,tungstênio, cromo. São identificados os óxidos de zircônio, de estrôncio, de titânio, de ítrio, mas não se isolam os metais.

A descoberta da técnica de manipulação de gases permite identificar o dióxido de carbono, o nidrogênio (ar mefítico) e o hidrogênio (ar inflamável). Joseph Priestlay (1733-1804)aumenta os conjuntos dos gases conhecidos, numa sequência de experiências memoráveis; indentifica o óxido de nítrico, o dióxido de enxofre, o gás clorídrico, o amoníaco e finalmente o oxigênio ( ar desflogisticado, ar ígneo, de Sheele).

Não é demais realçar o extraordinário feito técnico da identificação de um gás. Ao lado das limitações naturais dos equipamentos disponíveis, concorria para tornar mais difícil a questão o fato de não dispor de teoria coerente para a interpretação dos fenômenos químicos. Po isso mesmo, no final do século. XVIII, tornou-se indispensável formulação desse tipo, que viria coroar a evolução do pensamento teórico que acompanhará o amealhar do conhecimento experimental.

As formulações teóricas da química até o séc. XVIII. A diversidade das modificações das substâncias – aparente na variedade ampla de propriedades, formas e comportamentos – constituiu sempre um motivo básico para a procura de uma teoria unificadora, capaz de interpretá-la coerentemente. OP pensamento teórico químico (mesmo quando não explicitado como tal) teve sempre essa preocupação.

A princípio, naturalmente, a interpretação só poderia ser feita por via racional, consoante o desenvolvimento histórico do pensamento humano. Foi o que fez, por exemplo, Aristóteles, no séc. IV a.C., com os seus quatro elementos ( aguá, fogo, terra, e ar) em que estavam asa qualidades elementares – frio, quente, seco e úmido – combinadas aos pares. As propriedades das substâncias decorriam de variações do grau dessas elementares, da modificações das suas proporções. A unificação teórica era completa e as idéias de Aristóteles, sob uma forma ou outra, mantiveram sua integridade essencial até o séc. XVIII.

Daí surgiu a alquimia, não apenas como cura especulação intelectual, mas como conseqüência de uma forma racional do pensamento, embora não factual. Para o químico moderno é a alquimia obscura, nebulosa e verossímio. Talvez o seja, nos seus aspectos esotéricos; mas como forma de pensar em química, como tentativa de elaboração teórica, é coerente com uma filosofia e, portanto, não lhe falta substentação intelectiva.

O alquimista vem do artesão, que tentava purificar, transformar, alterar substâncias e se guiava pela existência das qualidades elementares. Então, para conseguir modificações essenciais ( hoje se diriam estruturais ) era necessário levar a substância à forma primeira, mas indiferenciado, para depois imprimir-lhe, mediante adições apropriadas, as qualidades desejadas. Daí as receitas com prolongadas calcinaçòes, com destilações repetidas dezenas de vezes, com extrações sucessivas, com o que se visava a obter, sob forma pura, isenta de imperfeições, a essência das substâncias.

Assim se desenvolveram escolas de alquimia em Alexandria, em Bizâncio, no mundo árabe. A sistematização da alquimia no Islã – Ao lado do seu envolvimento no pensamento místico – foi importante por sua ocasião de sua transmissão aos países europeus. Organizaram-se as teorias da constituição das substâncias, partindo da teoria de Aristóteles, segundo a qual as qualidades podiam ser exteriores ou interiores. Seria possível modificar uma substância se as suas qualidades interiores fossem exteriorizadas, o que se conseguia mediante um elixir. As qualidades elementares eram materiais que podiam ser manipulados, desde que houvesse um veículo apropriado. As substâncias eram classificadas segundo as suas propriedades: espíritos (voláteis), metais (fusíveis), corpos (pulverizáveis).

A evolução do conhecimento levou à formulação da teoria dualista da constituição das substâncias ( enxofre-mercúrio) e à possibilidade teórica da transmutação das substâncias, que se traduziu em vigoroso esforço experimental. Quando a alquimia retorna à Eoropa, vem envolta na especulação paramaterial que lhe é característica, mas traz também grande soma de conhecimentos que iriam florescer no esforço experimental e teórico dos séculos XVI e XVII.

É importante não esquecer a elaboração teórica, que ficou mais ou menos renegada ao segundo plano até o século XVIII, das idéias atomicistas de Leucipo e Demócrito, dos epicuristas e de Lucrécio. É interessante especular também se outras tivessemj sido as condições do desenvolvimento do mundo Romano, se a idéia atômica poderia ou não Ter ganho mais cedo a aceitação do mundo ilustrado. É possível que se tivesse mais cedo chegado às concepções modernas da química. Históricamente, o pensamento atomicista não exerceu influência no pensamento científico, até quase o limiar da ciência moderna.

A teoria da alquimia prevalece absoluta como formulação teórica no século XVI. Os iatroquímicos, procurando sistematicamente aplicar substâncias químicas à cura de doenças, pensavam em termos de princípio. Para Celso enuncia a teoria dos Tria Prima, enxofre, mercúrio e sal, que é um refinamento de alquimia árabe. A preocupação teóricva é de explicar como uma substância passa a outra, pela modificação dos seus princípios. Mas, ao mesmo tempo, por parte especialmente dos apotecários, o pensamento químico se torna mais prático, mais objetiva, mais quantitativa: os germes da química medida, mensurada, começaram a surgir no século XVII. É disso testemunha a obra de Glauber.

O médico e químico belga Johannes Baptista van Helmont ( 1579 – 1644 ), embora se tenha mantido fiel as concepções teóricas da alquimia, elabora uma teoria que aumentava de três para cinco, os princípios fundamentais: Enxofre, mercúrio, sal, fleugma e terra. Aparecem, também, no século XVII, as primeiras formulações da descontinuidade da matéria. O filósofo e matemático francês Pierre Garsend ( 1582 – 1655) retoma a idéia dos átomos, atribuindo-lhes pequeninos ganchos para constituírem os corpos.

Essa idéia, oposta à dos princípios de Aristóteles, ou aos Arcanos, elixires e essenciais dos alquimistas, aparecem mais claramente expressa pelo químico inglês Robert Boyle (1627-1691), The Sceptical chymist (1661; o químico céptico). Para Boyle, a matéria em movimento seriam os conceitos fundamentais, para o entendimento das propriedades químicas. A matéria seria constituídas por pequeninos blocos indivisíveis com forma próprias que se justaporiam agregando-se nos compostos. O calor seria também uma espécie de substância, com partículas em rápida movimentação. Ao cassinar uma substância, a partícula do calor a ela se incorporariam.

É controvertido se Boyle concebia as substâncias elementares como imutáveis, ou se admitia a possibilidade de transmutação. De qualquer forma, sua obra influênciou decididamente o pensamento químico, ajudando-o a purificar-se dos princípios primeiros dos princípios abstratos e não factual.

Por outro lado, os êxitos do pensamento mecânico, expostos de uma forma superior e magistral dos princípios de Newton (1687), mostraram aos químicos umn caminho novo para unificar teoricamente a massa de fatos. Ao terminar o século XVII, as idéias de átomo, de movimento, de interação mecânica, já eram subjacentes ao pensamento químico, embora ainda não formulara-se com clareza.

No século XVIII, A investigação do fenômeno da combustão leva à formulação da teoria do flogístico por Georg Ernst Stahl (1660-1774) e Ermman Boerhaave (1668-1738). Em linguagem moderna, o flogístico era o negativo do oxigênio, na combustão exalava-se flogístico, em lugar de haver combinação com o oxigênio. Foi este o primeiro princípio teórico da química, explicando satisfatóriamente uma multidão de fatos experimentas, mais deixando de lado outros que não se enquadravam na desflogistificação. A grande vantagem da teoria era de oferecer explicaçvão mecânica e simples de fenômenos diversos. Por isso mesmo, pôde acompanhar, vicissitudes, o rápido avanço da química empírica registrada no século XVIII.

Ao término deste período, estavam maduras asa condições para uma formulação unificadora dos fenômenos da química. Essa tarefa coube ao fundador da química moderna o francês Antoine Laurent de Lavoisier (1743-1794).

2.3 – Ramos da Química

Química inorgânica

A química inorgânica no século XIX. O pensamento de Lavoisier coloca-o conceitualmente na corrente do pensamento típico do século XIX, embora temporáriamente pertença ao século XVIII. Não há rigidez na distinção. O mérito de Lavoisier foi de Ter elucitado o fenômeno da combustão, sepultando a teoria do flogístico; Ter colocado a química numa firme base experimental; Ter reconhecido a natureza das substâncias elementares; Ter formulado explicitamente a lei da conservação da massa; Ter suportado estimulado o sistema de nomeclatura que, em essência, é o que se utiliza atualmente na química inorgânica. Seu livro Traité élémentaire de chimie (1789; tratado elementar de química) teve importância comparável ao de Newton pela influência que exerceu sobre os químicos.

Dispunha-se depois dele de arma teórica para o entendimento das reações químicas. Começa a época da formulação de leis gerais da combinação. J. B. Richter (1824-1898) e, com mais clareza J. L. Proust (1762-1807), formulam as leis das proporções constantes, que dá origem a formidanda controvérsia. Com C. L. Berthollet (1748-1822 ): Hoje sabe-se que há ambos sobravam razões. A lei da constância da composição, no entanto, teve aceitação universal. Abriu caminho para o trabalho de John Dalton (1786-1844), que deu uma formulação precisa e clara sobre o átomo ( partícula indivis´vel de uma partícula simples); que admitiu a combinação dos átomos para formar compostos (Dalton achava que só dois átomos se reuniam, raramente três), que estabeleceu a base teórica da lei das proporções constantes; que organizou uma tábua de pesos relativos ( equivalentes ).

Passou a química a navegar com bússola mais segura. É época dos trabalhos de J. J. Berzelius (1779-1848), que determina com técnica analítica vasta. Pesos atômicos e descobre elementos ( selênio, silício, titâneo ) além de diversas espécies de minerais. Berzelius organiza uma notação química simples, embora tenha sido modificada para melhor posteriormente; os síbolos dos elementos são, no entanto os que até hoje se usam.

As descobertas sucedem-se no terreno da química inorgânica. Obtêm-se puros o silício o zircônio, o titânio e o tório. O magnésio e o berílio são isolados. Obtêm-se o alumínio. Tudo por métodos puramente químicos. Com a utilização da espectroscopia torna-se possível identificar quantidades minutíssimas de substâncias em sistemas complexos. Assim, R. W. Bunsen (1811-1889) descobre o césio e o rubídio. Os padrões de medida aperfeiçoam e construem-se extensas tábuas de pesos equivalentes a hipótese de A. Avogrado (1776-1856) – desprezada por quase cinqüenta anos – ganha rápida aceitação, uma vez exposta por S. Cannizzaro (1826-1910), em 1860.

Desfazem-se as confusões sobre os pesos atômico e molecular, e os valores atribuídos a essas grandezas correspondem aos modernos. Mas uma vez o conhecimento vastíssimo das propriedades dos elementos permitia um nova síntese – a da classificação periódica. A obra de Mendeleev (1834-1907) tem atrás de si toda a elaboração teórica e todo o trabalho experimental da química dos séculos anteriores. É como o coroamento de uma etapa. A obra aparece em alemão, pela primeira vez, em 1869.

Faltas nos grupos de elementos foram deixadas por Medeleev para serem preenchidas por elementos ainda não descobertos. Previu-lhe Mendeleev as propriedades e isso contribuiu para aceitação de sua classificação.

De fato, logo após o aparecimento da obra, não lhe prestaram os químicos de grande aceitação. No entanto, a descoberta do Gálio (identificado como o eka-alumínio, previsto por Medeleev), a do escândio (identificado como eka-boro), e a do gremânio (análogo ao eka-silício) foram convincetes demonstrações da genialidade da classificação. Atualmente, com o conhecimento mais ou menos detalhado da estrutura atômica, não é mais possível deixar de reconhecer a extraordinária intuição do sábio russo.

Com a sistematização da classificação das substâncias elementares, ficavam de uma vez enterradas as idéias das essências alquímicas. As combinações inorgânicas aspareciam como conseqüência de propriedades naturais dos elementos. Faltava, porém, explicar porqu
ê estes combinavam e o que havia de comum entre as combinações química e o resto do comportamento da matéria. A síntese desse pensamento ocorreu no desenvolvimento da físico-química.

 

Química orgânica

Não foi novidade no séc. XIX a investigação dos compostos orgânicos. Já a alquimia árabe os considerava em detalhe, especialmente na sua atuação medicinal. Muitos processos orgânicos eram conhecidos e praticados há séculos (fermentações, por exemplo). Não havia, porém, clareza sobre o quê distinguia os compostos orgânicos dos inorgânicos. No início do séc. XIX ficou evidente os compostos orgânicos obedeciam à lei das combinações (Berzelius). Supunha-se, porém, que uma força vital os permeasse, distinguido dos orgânicos e impedindo a sua obtenção em laboratório.

O primeiro grande golpe contra essa teoria foi a obtenção da uréia, a partir do cianato de amônio, por Friedrich Wöhler. Pouco depois P.E.M. Berthelot (1827-1907) anuncia a possibilidade de obtenção de qualquer substância orgânica a partir de carbono, hidrogênio, oxigênio e nitrogênio. Foi o golpe mortal no vitalismo.

O crescimento da química orgânica foi então rápido. Descobrem-se os radicais e estrutura-se toda uma teoria, em parte falsa, sobre eles. Reconhece-se o isomerismo. E as reações de substituição. Ficam evidentes os grupamentos funcionais. E, curiosamente, esquecem-se os orgânicos dos átomos, fixando-se nas unidades orgânicas, elas mesmas compostas.

Em meados do séc. XIX F. A. Kekulé (1829-1896) mostra a tetravalência do carbono, contribuindo assim para a formulação da estrutura dos compostos orgânicos. A dos compostos alifáticos parece ficar completamente elucidada, quando se representam as ligações entre os átomos – repescados do olvido orgânico – por pequenos traços, como ainda se faz. A estrutura dos compostos aromáticos recebe, de Kekulé, a chave de interpretação do hexágono do benzeno. A idéia de uma estrutura espacial vem com J. Le Bel (1847-1930) e tem bonita confirmação experimental nos trabalhos de L. Pasteur (1822-1895) sobre os isômeros do ácido tartárico.

O progresso da síntese orgânica é rapidíssimo. Obtêm-se, por via sintética, corantes de importância industrial: a química orgânica transforma-se em grande indústria química. Apesar disso, a concepção da estrutura molecular ainda é qualitativa. As moléculas existiam sem que se tentasse representar razões mias gerais que garantissem e explicassem a sua estabilidade. O que só se consegue, no séc. XX, com a reunião frutífera da física à química.

Físico Química

A fisico-química é a ciência cuja fronteiras podem ser largas ou estreitas, conforme o entendimento desse ou daquele autor. Conceitualmente, seria a investigação física das estruturas químicas, isto é, tudo o que, modernamente, se chama física atômica, física nuclear, mecânica quântica atômica e molecular.

Historicamente, formou-se como um ramo da química preocupado com a investigação dos efeitos químicos da corrente elétrica (eletroquímica). Esses efeitos começaram a ser investigados quase imediatamente depois da descoberta de A. Volta (1745-1827). Os trabalhos de H. Davy e de M. Faraday, sobre eletrólise, datam do início do séc. XIX. A investigação eletroquímica toma, porém, sua feição mais moderna no estudo da dissociação eletrolítica (Grotthuss, Willianson, Clausius, Arrhenius) e da condução de carga pelos íons (Hittorf, Kohlrausch, Debye), que chegam até o séc. XX.

A investigação das pilhas eletroquímicas (Nernst) tem oportunidade de utilizar, na química, as armas oferecidas por uma ciência puramente física – a termodinância, a termoquímica, foi objeto de investigação por parte dos químicos). Começava uma síntese intercientífica que iria culminar no início do século XX.

O estudo das velocidades de reação foi outro rebento da química do século XIX, é estudada a hidrólise da sacarose (Wilhelmi), a esterificação de ácidos e de álcoois. Define-se a ordem de uma reação (Van’t Hoff) e procura-se entender o mecanismo da reação (energia de ativação, Arrehenius). Investiga-se a catálise e define-se a função do catalisador (Ostwald).

Ao terminar o século XIX, as descobertas químicas ofereciam um panorama satisfatório. Sem Ter conseguido as sínteses magistrais da física (termodinâmica, eletromagnetismo, teoria cinética dos gases, mecânica e etc…) tinha obtido a necessária uniformidade e a possibilidade de grande expansão. Algun pontos eram desconfortáveis: não havia explicações para a afinidade química, nem para as estruturas das moléculas.

A resolução desses problemas, ou pelo menos o avanço na sua resolução, veio da física, com a descoberta da radioatividade e a do elétron; a medida da carga específica e a da carga do elétorn;a sua utilização inequívoca; a descoberta do efeito fotelétrico; a aplicação dos princípios da quantificação de Planck ao efeito ftelétrico, por Einstein; o modelo atômico imposto por Rutherford e modificado por Bohr; a mecânica ondulatória de Schrodinger; a quantificação do átomo; a radioatividade artificial; a descoberta do nêutron; a descoberta de uma multidão de partículas elementares; a fissão nuclear.

Todas essa descobertas e teorias viera de físicos e sacudiram espetacularmente a química, dando conteúdo novo e inesperados as suas teorias, unificando seus conceitos, criando uma química física, onde não há limite nítido entre o fato químico e o fato físico.

Química analítica

Química analítica

A química analítica remonta ao antigo Egito, onde já foram conhecidas entre outras, as técnicas de copelação do couro e da prata, em que o metal impuro era aquecido numa copela (cadinho poroso feito de cinza de osso); essa prática pode, de certo modo, como um método da química analítica. A química de então não podia ser considerada como ciência, isto é, sistemas de conhecimentos ordenados de acordo com certas leis e princípios, mas apenas como conjuntos de conhecimentos empíricos esparsos sem nenhuma interligação.

Transmitidas dos egípcios aos gregos e destes aos árabes, essas técnicas empíricas foram desenvolvidas durante toda a Idade Média, constituindo o alicerce da alquimia. Visando a descoberta da panacéia universal e de todos os processos para a obtenção do ouro e da prata através da transmutação dos outros metais, os alquimistas contribuíram decisivamente para o progresso dos conhecimentos químicos.

Mas só no século XVII, com Robert Boyle (1627-1691), a química começa a Ter aspecto de verdadeira ciência. Para estabelecer o conceito de que elementos são os corpos mais simples do que os quais os corpos complexos são formados, Boyle usou pela primeira vez um novo método de química, baseado nos princípios de que os conhecimentos vem de uma generalização de dados experimentais e leis observadas na natureza.

Esse conceito de elemento químico determinou grande desenvolvimento da química analítica. O próprio Boyle sistematizou as reações químicas até então conhecidas então propôs um número de novos testes, originando a química analítica por via úmida. Foi o primeiro a usar o litmo ou tornassol como indicador para substâncias ácidas e básicas.

A química analítica teve importante avanço com os trabalhadores de Lavoisier (1743-1794) – desenvovimento de técnicas de análises de gases – e do químico sueco Torbern Olof Bergman (1735-1784), que separou os metais (catíons) em grupos, dando origem a análise sistemática. O fundador da química analítica quantitativa com base científica foi, porém, o químico russo Mikhail Vasilievich lomonosov (1711-),o primeiro a usar a balança para pesar gentes e produtos numa reação química, e que, em 1756, confirmou experimentalmente a lei da conservação da matéria, geralmente atribuída a Laoisier, que a verificou em 1774.

As observações feitas na química analítica quantitativa constituíram preciosos elementos para a química teórica, levando às descobertas das leis ponderais, cuja confirmação experimental permitiu a John Dalton (1766-1844) formular a teoria atômica. Isso, por sua vez estimulou muito a química analítica quantitativa, já que se tornou necessária a determinação das massas atômicas dos elementos de maior rigor, campo ao qual Bezerlius (1779-1848) deu importante contribuição.

Após ou durante esse período, Liebig (1803-1873) Gay-Lussac (1778-1850), Bunsen (1811-1899), Kirchhof (1824-1887), Nikolai Aleksandrovitch Menchtchunkin (1842-1907) e outros contribuíram de modo notável para o desenvolvimento da química analítica, qualitativa ou quantitativa, com grandes números de estudos e de descobertas.

A química analítica quantitativa nop final do século XIX foi grandemente influenciada pelos excepcionais progressos da química orgânica e da inorgânica, devendo-se destacar principalmente a classificação periódica dos elementos, de Mendeleev (1834-1907).

A aplicação da dimetiglioxima como reagente para a determinação qualitativa e quantitativa do níquel, pelo químico russo L. A. Chugaev (1873-1922), significou a introdução do uso intensivo dos reagentes orgânicos nas análises químicas, desde 1905, ano em que aquele químico apresentou seus estudos. Aualmente, conhece-se grande número de reagentes orgânicos que se combinam com os compostos inorgânicos, formando compostos poucos solúveis e na maior parte das vezes, coloridos, no qual o metal não se encontra no estado iônico, mas sim formando compostos de coordenação.

Esses compostos geralmente têm elevada massa molecular, de modo que pequena fração do íon fornece quantidade relativamente grande de precipitado. O precipitante org?ânico ideal deve ser específico em caráter, isto é, só deve dar precipitado com um íon determinado. Isso, porém, é bastante difícil, sendo mais comum que o regente orgânico reaja com um grupo de íons; por controle das condições experimentais, é possível precipitar-se apenas um dos íons do grupo.

Os químicos analistas já a muito tempo ensaiavam com apenas uma gota de solução. Exemplo familiar é o uso do papel indicador para detectar rapidamente um excesso de íons hidrogênio ou hidroxila. Esse tipo de reação despertou os interesse do químico Fritz Feigl (1891-1959) também desenvolveu estudos nesse campo de atividades científicas.

Em conseqüência dos estudos e pesquisas de Feigl, surgiu nova especialidade na química analítica, a análise de toque (ver microanálise), que tem aplicações em minérios e minerais, metais, ligas, produtos farmacêuticos, solos, águas, produtos industriais etc.

Os físico-químicos Arrhenius (1859-1927) – com a teoria da dissociação eletrolítica -, W Ostwald (1853-1932) – com a lei da diluição – W. H. Ernst (1864-1941) – com o princípio de produto de solubilidade -, L. Pizarzhevsky – , reconhecendo as reações de oxirredução com um processo envolvendo transferencia de elétrons – e outros deram à química analítica uma sólida base científica.

Historicamente, o desenvolvimento dos métodos analíticos foi acompanhado pela introdução de novos instrumentos de medida, como a balança para análises gravimétricas a aparelhagem de vidro para análises volumétricas e gasométricas.

Quase toda propriedade física característica de um elemento ou substância pode ser a base de um método para sua análise. Surgiram, então, com o desenvolvimento da físico-química, novos métodos de análise baseado em princípios diversos da química analítica clássica, originado-se análise instrumental, pela qual os constituintes são determinados pela medida de uma propriedade física. Dentre os principais métodos estão os que usam as propriedades envolvendo interação com a energia radiante – raio X, absorsão de radiação, fluorescência, ressonância magnética nuclear -, e os que utilizam propriedades nucleares, como, por exemplo, a radioatividade.

Esses métodos em muitos casos apresentam grandes vantagens em relação aos métodos clássicos da química analítica: a rapidez das análises, a possibilidade do uso de método não destrutivo e a utilização de uns poucos miligramas ou, no caso de soluções, de frações de mililitro, sem prejuízo da exatidão da análise.

Em 1954, o químico suíço Gerold Karl Schwarzenbach (1904-) publicou trabalhos que tinham sido iniciados dez anos antes sobre a aplicação de ácidos poliaminocarbo-xílicos em química analítica quantitativa, principalmente em análise volumétrica, considerando que os complexos formados com os metais são de alta estabilidade. A introdução desse tipo de reagente resultou numa ampliação extraodinária dos métodos complexométricos, sendo que o ácido etilenodiaminotetracético (EDTA) é o mais importante composto desse grupo. Em uns poucos casos, o ácido nitrilotriacético (NITA) é mais adequado.

O estudo desse tipo de copostos continua em desenvolvimento, e a cada dia novas aplicações. Como a química analítica se fundamenta nos princípios e leis gerais da química inorgânica e da físico-química, pode-se esperar que o seu progresso acompanhe o dessas especialidades.

Química Quântica

A química quântica propõe-se a utilizar as teorias da mecânica sobre estrutura atômica e, a partir das propriedades dos átomos, estudar as propriedades das moléculas, isto é, dos elementos e compostos químicos. Para isso, desenvolveu uma teoria da ligação químicas e métodos convenientes de cálculo das propriedades moleculares , distâncias e ângulos de ligação, momentos dipolares e parâmetros de reatividade em diferentes tipos de reações.

Assim como se pode dizer que a mecânica quântica nasceu a 14 de dezembro de 1900, quando o físico alemão Max Palnck (1858-1947) apresentou à Sociedade Alemã de Física o trabalho em que introduzia o quantum de ação, a constante universal h (constante de Plank, de valor 6,55 x 10-27 ergs. s) e a equação E=hv, pode-se dizer que a química quântica nasceu no dia 27 de janeiro de 1926, quando a revista Annalen der Physik recebeu a primeira de quatro comunicações do físico austríaco Erwin Schrödinger (1887-1961) com o título geral “A Quatização como um problema de valores próprios” da qual constava a sua equação independente do tempo.

A quarta comunicação, recebida a 21 de junho de 1926, com a sua equação dependente do tempo, completava o trabalho de Schrödinger, que iria ter a maior influência na física teórica e servir de base para várias disciplinas hoje florescentes, aprofundando a compreensão dos fenômenos físicos e químicos e levando ao desenvolvimento de uma nova teoria da valência e da ligação química.

Para o elétron, como para outras partículas subatômicas, ao contrários dos corpos em movimentos da mecânica clássica, não é possível saber exatamente posição e momento nem calcular trajetórias: é o princípio da incerteza, de Heisenberg, formulado em 1927 pelo físico alemão Werner Karl Heisenberg (1904-1976).

Mas o elétron existe em determinada região do espaço e é possível calcular a probabilidade do espaço de sua localização em determinada região. Essa probabilidade em que tem que ser, por definição, uma função sempre positiva, podendo ter qualquer valor entre 0 e 1. Segundo Max Born (1882-1970), a função de onda é a grandeza tal que seu quadrado, mede a probabilidade de encontrar-se o elétron em determinada região.

Essa região é chamada na química quântica atual de orbital, em oposição às órbitas fixas das teorias atômicas anteriores a Schrödinger. Os orbitais podem ter somente determinadas fórmulas, classificando-se em esférica segundo sua forma. Os orbitais tem níveis de energia discretos, crescentes, que são os únicos que os elétrons podem ocupar. Existem em cada nível p (2p, 3p etc.) 3 orbitais de mesma energia , 7 orbitais f de mesma energia etc. Os orbitais de mesma energia são chamados ‘degenerados’.

Cada orbital só pode ser ocupado por dois elétrons , com spin desemparelhado. É o princípio da exclusão, de Pauli, formulado pelo físico austríaco Wolfgang Pauli (1900-1958). Esses postulados permitem saber como estão arrumados os elétrons nos orbitais de um átomo qualquer.

Assim, combinado-se os orbitais atômicos de acordo com as regras simples calculando-se matematicamente qual a combinação de funções de onda que torna mínima a energia do orbital molecular com base na equação de Schrödinger, tem-se um orbital molecular onde podem estar os elétrons de ligação: um de energia mínima chamado estado fundamental da molécula. Há outras combinações permitidas pela teoria, que dão orbitais de energia cada vez maior; Quando a energia chega a igualar a dos orbitais componentes, o orbital molecular é chamado não ligante e quando ultrapassa essa energia é chamado antiligante. Os elétrons só ocupam orbitais em estados excitados.

Quando surgiu a equação de Schrödinger, o físico inglês paul Adrien maurice Dirac (1902-) disse que: “as leis físicas necessárias para teoria matemática de uma grande parte da física e da química inteira já estão completamente conhecidas e a dificuldade está apenas em que a aplicação dessas leis leva a equações muito complicadas para erem solúveis”.

Embora só tenham sido encontradas soluções exatas para poucos átomos e íons, desenvolveram-se métodos empíricos aproximados que permitiram a extensão da teoria a sistemas multieletrônicos e a sistemas conjugados, com elétrons, como o benzeno e outros mais complicados.

Para o benzeno, por exemplo, o método de Huckel devido ao físico alemão Erich Huckel (1896- ) calcula 6 orbitais, 3 de ligação, que acomodam os 6 elétrons ? do Benzeno, dois a dois, e 3 de antiligação, que só são utilizados em estados excitados. Para o naftaleno, com 10 elétrons ? , eles são 5 de cada tipo.

Além da teoria de Huckel, desenvolveram-se outras teorias – a dos Campos ligantes é a principal – , que permitem explicar a ligação e calcular as propriedades moleculares nos compostos de coordenação, especialmente nos complexos de metais ou íons metálicos com complexantes (ligantes) orgânicos e inorgânicos.

Além dos orbitais s, p, d, f, a química quântica usa orbitais hídricos, sp3, sp2, e sp para o carborno tetraédrico ,trigonal (olefínico) ou digonal (acentilênico), respectivamente; sp2d para o cobre quadrangular em complexos de cobre divalente; sp3d2 para o cobalto octaédrico em complexos de cobalto trivalente etc. A hibridação é um artifício do químico para explicar, por exemplo, a tetravalência do carbono e a disposição tetraédrica de suas valências. Entretanto, o químico norte-americano Linus Carl Pauling (1901 – ) afirma que, se a mecânica quântica tivesse sido desenvolvida por químicos e não por espectroscopistas, os orbitais hídricos seriam os usados no cálculo e não os outros. Para efeito de cálculo, é indiferente usar uns ou outros, pois os hídricos atuais deduzem-se dos não-hídricos (ou puros).

Recentemente, a química quântica foi enriquecida com novos métodos qualitativos de fácil utilização, como a teoria das relações de simetria em orbitais, dos químicos norte-americanos Rubert Burns Woodward (1917 – )e Roald Hofmann, em que uma série de reações pode ter o seu curso previsto quando se conhece a simetria do orbital demais alta energia ocupado. Essa teoria aplica-se especialmente a sistemas com elétrons e permite explicar diferenças entre rações no estado fundamental da molécula (via térmica) e reações no estado excitado (reações fotoquímicas por exemplo)

Pode-se resumir dizendo que a química quântica permitiu aprofundar o conhecimento do que se passa no interior dos átomos e das moléculas, constituindo ainda hoje um campo de pesquisa muito ativo. Houve sábios que previram que ela daria solução a todos os problemas da química e, embora tudo indique que esse ideal não será atingido, sua contribuição foi e continua sendo inestimável para o estudo e compreensão dos fenômenos químicos.

Com o advento e o emprego cada vez maior de métodos físicos e da química quântica, há alguns físicos e químicos que pensam que a química acabou, que se está reduzindo a um capítulo da física. Essa afirmação é facilmente refutável, pois a física enriquece a química e vice-versa; os pesquisadores de cada uma das duas ciências são obrigados a conhecer cada vez mais profundamente alguns aspectos da outra, pois elas têm alguns problemas comuns.

Preocupam-se, porém, com coisas diferentes; o químico estuda o átomo e a molécula para compreender as reações químicas, enquanto físico estuda as reações para compreender o que se passa com as moléculas e os átomos. Pelo menos em futuro previsível, as duas ciências conservarão sua diversidade de pontos de vista ao encarar os fenômenos naturais, diversidade que lhes dá o mesmo status de ciências distintas, ao mesmo tempo autônomas, com objetivos e métodos próprios, e interdependentes./ Taba/ Nabu.

Química Biológica

Química biológica ou, melhor, bioquímica, é a parte da química dedicada ao estudo da composição dos seres vivos e das transformações químicas que neles se passam.

A descoberta do oxigênio, em 1772, logo seguida do conhecimento de sua utilização pelos seres vivos, do papel da luz na sua produção pelos vegetais, e da medida, feita por Lavoisier (1743-1794) , do seu consumo pelos animais, marcam o início da investigação dos seres animados. Muitas descobertas se situam no período de 1773 a 1830, tais como a uréia, isolada da urina, por Guillaume François Rouelle (1703-1770), a aspagarina, identificada por L.N. Vauquelin (1763-1829) e P.J Roubiquet (1780-1840), e fermentação alcoólica, explicada por Gay-Lussac, em 1810, e cuja natureza catalítica foi, em 1837, indicada por Berzelius (1779-1848).

Pasteur (1822-1895) demonstrou, mais tarde, que a fermentação alcoólica é produzida por microrganismos e Eduard Buchner (1860-1917) completou a descoberta monstrando que os extratos de levedura produzem a fermentação na ausência de células vivas. Importantes conquistas de fisiologia se relacionaram com o conhecimento de processos químicos: o glicogêneo, isolado por Claude Bernad (1813-1878) , em 1850; a hemoglobina, cristalizada por Hoppe-Seyler (1825-1895), em 1884; os ácidos nucléicos (desoxirrinucléico), isolados por J.F. Mescher (1811-1887), em 1869; e a histo-hematina, descoberta por MicMum e, mais tarde, em 1923, redescoberta e estudada por David Keilin (1887-), que introduziu o termo ‘citocromo’ e mostrou o papel dessa substância n respiração celular.

Wilhelm Kühne (1837-190) lança, em 1877, o termo ‘enzima’ e Hans Ficher (1881-1945), em 1893, o conceito enzima-substrato. Seguiram-se, nas primeiras décadas do séc. XX, notáveis avanços no domínio da fermentação alcoólica, com a descoberta do papel dos fosfatos e o isolamento, por Sir Arthur Harden (1865-1940) e Sydney Young (1857-1937), da cozimase, e, no terreno da respiração celular, com a descoberta do fermento respiratório e do papel do ferro, por Otto heinrich Warburg (1883-1970), em 1912; com a revelação do efeito catalíticodos ácidos carboxílicos, por Albert Szent-Györgyi (1893-), e, depois, com a descrição do ciclo dos ácidos tricarboxílicos, feita por Sir Adolf Krebs (1900-), em 1937. O termo ‘coenzima’ foi proposto por Gabriel bertrand (1851-1917), em 1897.

A compreenção do mecanismoíntimo das reações que se passam nos organismos vivos alargou-se com a descvoberta, por Wargburg, em 1937, do ATP (ou TAP) e do papel que ele desempenha na oxidação fosforilativa, bem como com os conhecimentos das reações de transaminação, dado por Aleksander Evsairyrvith Braunstein (1902-) e Kirtizman, em 1938. Foram, a seguir, desvendadas as via de degradação da glicose (glicólise), por Gustav Embden (1834-1933) e Otto Meyerhof (1884-1951), e reconhecidas as semelhanças delas com os processos químicos que se passam na contração muscular.

Aos poucos se foi conhecendo o mecanismo de processos metabólicos, mediante a identificação de suas reações com as que se produzem em laboratório. Já Friedrich Wöhler (1800-1882) havia, em 1828, conseguido realizar a síntese da uréia a partir do cianato de chumbo e amônio, mostrando, com isso, que a síntese dos compostos orgânicos não é, como até então se supunha, propriedade exclusiva dos seres vivos.

No campo da nutrição descobriram-se, no começo do século XX, novas substâncias nutricionais – as vitaminas – cujo mecanismo de ação pareceu, inicialmente, misterioso. Aos poucos foram elas estudadas, o mecanismo de ação elucidado, a constituição química estabelecida e a síntese realizada. A vitamina A foi logo descoberta, por Elmer Werner McCollum (1879-1969); o papel do caroteno, por Hans August Simon Euler-Chelpin (1873-1964); o das flavoproteínas por Warburg; a vitamina B1 (tiamina), por Jansen.

Em outro sentido, não foram menos sensacionais a cristalização de uma enzima, a ureze, por James Batcheller Sumner ( 1887-1955 ), e a de um vírus, o do mosaico do tabaco por Wendell Meredith Stanley ( 1904-1971 ) a genética, valendo-se da bioquímica, pôde desvendar a natureza química do gene, e conhecendo-o como um composto ácido desoxiribonucleico, e James Dewey Watson (1923- ?) e Francis Harry Compton Crick (1916-?), em 1953, acertaram-lhe a intricada estrutura molecular. Esse gênero de estudos tornou tal vulto que hoje se constitui em ramo individualizado da genética, a genética bioquímica. Não menos fundamentais foram as aplicações práticas decorrentes dos avanços dos conhecimentos no domínio da bioquímica dos seres vivos. Basta mencionar a descoberta da penicilina por Sir Alexander Fleming (1881-1955), seguido de numerosos antibióticos. Da mesma forma, a preparação de extratos ativos de glândulas endócrinas abriu vasto campo de pesquisas que permitiu o isolamento e asíntese de hormônios com largo emprego de medicina. Por diversas fases passou a bioquímica no seu relacionamento com outras ciências biológicas no final do século XIX, a química biológica era, ainda, apenas um capítulo da fisiologia. A partir de 1903, quando se adotou a denominação bioquímica, então proposta por Carl Neuberg (1977-1956), ela se constituiu em ciência autônoma e progressivamente alarga o seu domínio de ação. Além da genética bioquímica, já referida à há citoquímica ou bioquímica celular, que é a bioquímica em nível celular; a bioquímica vegetal, dedicada aos vegetais; a bioquímica animal, consagrada aos animais; e a bioquímica dos microorganismos, aplicada aos seres unicelulares ( algas, bactérias e protozoários ).

2.4 – Anexo

Sir Ernest Rutherford

III – CONCLUSÃO

Com esse trabalho eu aprendi muito mais sobre a química e o que eu posso facilitar a minha vida usando ela no dia-a-dia, muito no 1º, 2º e 3º ano. E usando meus conhecimentos eu me ajudarei.

IV – BIBLIOGRAFIA

Chittenden, Russel Henry. The development of phisyological chemistry in the United States. New York, 1930 ( American Chemical Monograph)./ Plimmer, Robert Henry Aders. The history of the biochemical society, 1911-1949. Cambridge, 1949./ Villela, Gilberto Guimarães; Bacila, Metry & Tastaldi, Henrique. Bioquímica. 2 . ed. Rio de Janeiro, 1966./ Lehninger Albert L. Biochemistry; the molecular basis of cell structure and function [New York, 1970]./ vima/cava.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

BAIXE O TRABALHO AQUI [108.68 KB]

 

Latest articles

Trabalhos Relacionados