- Anúncio -

Função Quadrática 

Funções quadráticas completas e incompletas 

As equações completas tem forma ax2+bx+c=0.Há também as incompletas que possuem forma ax2+bx=0 ou ax2+c=0.

Coeficientes

São os números que acompanham as partes literais de uma função quadrática. Os coeficientes são a, b e c sendo que a letra a sempre acompanha o termo x2, a letra b acompanha o termo x e a letra c não acompanha termos literais. Tais conceitos são utilizados na resolução da função quadrática.

Concavidade

Se a>0 a parábola representada no gráfico da função tem sua concavidade voltada para cima.

Se a<0 a parábola tem sua concavidade invertida, ou seja, voltada para baixo.

Discriminante : As raízes em relação ao delta ()

O discriminante da função quadrática é representado por delta sendo que, =b2-4ac.Tal fator é essencial ao cálculo das raízes da função.

- Anúncio -

Raízes

As raízes da função quadrática são os valores de x para os quais se tem f(x)=0.Determinam-se as raízes da função resolvendo-se a função quadrática ax2+bx+c=0. Para que o procedimento seja possível devemos lançar mão da fórmula de Báskara: x = -b/2a onde na maioria das vezes obtemos duas raízes.

As coordenadas do vértice

As coordenadas do vértice V de uma função f(x)=ax2+bx+c , a0 são obtidas da seguinte forma no eixo y (ordenada) temos: ax2+bx+c=y ax2+bx+(c-y)=0.

Existem valores reais de x quando 0, isto é, b2-4ac (c-y) 0

b2-4ac+4ay0 4ay- y-/4a yv= -/4a .

No eixo x (abcissa) temos :

Na função y=ax2+bx+c vamos substituir y=yv= -/4a .

Temos yv=ax2+bx+c ax2+bx+c= -/4a .

Temos =b2-4ac =(4ab)2 -4.4a2b2 =16a2b2-16a2b2 então =0 portanto xv=-4ab/8a2=-b/2a xv= -b/2a

Construção de gráficos

A função quadrática é representada graficamente em R X R por uma curva denominada parábola. Se a<0 a abertura da parábola é voltada para baixo, se a>0 a abertura será voltada para cima.

Intersecção no eixo x

A parábola corta o eixo x nos pontos onde se localizam as raízes da equação.

Intersecção no eixo y

A parábola corta o eixo y nos pontos onde se localizam o coeficiente c.

Ponto máximo e mínimo

Se a>0 existe o valor mínimo representado por y= -/4a .

Se a<0 existe o valor máximo representado por y= -/4a .

Conjunto Imagem

Vejamos como se obtém o conjunto imagem da função quadrática, conforme o sinal de a .

  1. a>0

temos y -/4a Im(f)=y R/y -/4a

b) a<0

temos y -/4a Im(f)=y R/y -/4a

Estudo do sinal

Vamos agora determinar os valores de x, para os quais f(x)= ax2+bx+c é positivo ou negativo

Exemplos de Gráficos

a<0

a<0

 

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

BAIXE O TRABALHO AQUI

- Anúncio -

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados.