- Anúncio -

 

equação do segundo grau, também chamada de equação quadrática, é expressada por:

ax2+bx+c=0

Observe que o maior grau da equação é dado pelo expoente do termo ax², por esse motivo a equação é do segundo grau. Chamamos de incógnita os valores desconhecidos como x, y e z. Já a, b e c são números reais chamados de coeficientes.

As equações do segundo grau podem ser do tipo completa ou incompleta. O que determina isso são os coeficientes b e c. Lembre-se sempre que o coeficiente a deve ser diferente de zero, caso não seja a equação não será do segundo grau. Veja como podemos representar a equação completa e incompleta.

- Anúncio -

Equação do segundo grau completa

Para uma equação ser considerada completa, os coeficientes a, b e c, devem ser diferentes de zero, ou seja: a ≠ 0b ≠ 0 e c ≠ 0. Com isso a equação do segundo grau possui a seguinte estrutura: ax2+bx+c=0. Acompanhe os exemplos a seguir:

2×2+4x+1=0

a = 2, b = 4, c = 1

y2+3y+6=0

a = 1, b = 3, c = 6

Equação do segundo grau incompleta

Quando a equação é incompleta os coeficientes b e c podem ser iguais a zero, ou seja, b = 0 e c = 0. Veja os exemplos:

x2−4=0

a = 1, b = 0, c = – 4

3y2+6x=0

a = 3, b = 6, c = 0

5z2=0

a = 5, b = 0, c = 0

Resolvendo a equação do segundo grau

O objetivo de se resolver uma equação do segundo grau é encontrar os valores reais que a incógnita assume. Esses valores são chamados de raízes da equação, como ela é do segundo grau deve possuir duas raízes reais diferentes ou idênticas.

Fórmula de Bhaskara

Para solucionarmos a equações do segundo grau seja ela completa ou incompleta, podemos utilizar a seguinte fórmula:

x=−b±b2−4⋅a⋅c√2a

Fórmula de Bhaskara completa

A fórmula de Bhaskara pode ser escrita de forma resumida, explicitando o discriminante, ou seja, delta (Δ).

Δ=b2−4⋅a⋅c

Fórmula do discriminante (Δ)

x=−b±Δ√2a

Fórmula de Bhaskara Resumida

Aplicando a fórmula de Bhaskara

Exemplo: Resolva a equação do segundo grau: 4x² + 4x + 1 = 0, utilizando a formula de Bhaskara resumida.

4x² + 4x + 1 = 0
a = 4, b = 4, c = 1

Δ=b2−4⋅a⋅c

Δ=42−4⋅4⋅1

Δ=16−16=0

x=−b±Δ√2a

x=−4±0√2⋅4

x=−4±08=−48=−12

As raízes dessa equação do segundo grau são idênticas, sendo assim:

x′=−12

x′′=−12

- Anúncio -

DEIXE UMA RESPOSTA

Por favor digite seu comentário!
Por favor, digite seu nome aqui

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados.