Distribuição eletrônica, Introdução e Conclusão

Introdução:

A distribuição eletrônica refere-se ao modo como os elétrons estão distribuídos nas camadas ou níveis de energia que ficam ao redor do núcleo do átomo.

Segundo o modelo atômico de Rutherford-Böhr, os átomos dos elementos químicos conhecidos possuem no máximo sete camadas eletrônicas, que aumentam de energia no sentido de dentro para fora do núcleo (1 – 2 – 3 – 4 – 5 – 6 – 7). Essas sete camadas também podem ser designadas pelas respectivas letras K – L – M – N – O – P – Q, sendo que a K é a primeira, ficando mais perto do núcleo e sendo a de menor energia. Por outro lado, a camada Q é a sétima, sendo a mais afastada do núcleo e a de maior energia.

Distribuição eletrônica

Com os aperfeiçoamentos feitos na Tabela Periódica ao longo dos anos, e com o aumento de elementos químicos conhecidos, passou-se a utiliza-la de modo a prever o comportamento dos elementos nela contidos no que diz respeito às suas propriedades e características, contudo, existem exceções, tornando a tabela falível nas previsões de propriedades desses elementos. Por esse motivo iniciou-se estudos quânticos relacionados aos elementos, os átomos e principalmente sobre o posicionamento dos elétrons na eletrosfera.

distribuição eletrônica, ou como também é conhecida, princípio da configuração eletrônicanada mais é que a disposição dos elétrons de forma que o átomo fique em seu estado fundamental.

O estado fundamental de um átomo é aquele onde todos os seus elétrons estão dispostos nos níveis mais baixos de energia que estão disponíveis. O estado fundamental também é conhecido como estado estacionário, e nesse estado o átomo possui os seus elétrons em um estado de mínima energia possível.

Camadas eletrônicas

A partir do modelo atômico de Bohr, que é um aperfeiçoamento do modelo atômico de Rutherford, tornou-se possível a compreensão de alguns fenômenos que os modelos atômicos anteriores não conseguiam explicar com eficácia. Através de um experimento que se baseou na emissão de luz utilizando átomos de apenas um elétron, o postulado de Bohr mostrou que os elétrons estão confinados em determinados níveis de energia quando em seu estado estacionário, e cada estado estacionário está relacionado à um nível de energia, descrito pelo número quântico principal (n) que varia de 1 a 7, também chamados de camadas K, L, M, N, O, P e Q, e representado por uma órbita localizada ao redor do núcleo do átomo. Para que o elétron migre de um nível para o outro é necessário que haja absorção de energia.

http://www.infoescola.com/wp-content/uploads/2007/08/distribuicao-eletronica.jpg

Cada camada comporta uma quantidade máxima de elétrons, como podemos verificar a seguir:

Nível (n) 1 2 3 4 5 6 7
Camada K L M N O P Q
Máximo de elétrons 2 8 18 32 32 18 2

A partir dessas informações, podemos distribuir os elétrons de qualquer elemento da tabela periódica com facilidade, por exemplo:

Hidrogênio (H):

Número atômico = 1

Nível (n) 1
Camada K
Máximo de elétrons 1

Carbono (C):

Número atômico = 6

Nível (n) 1 2
Camada K L
Máximo de elétrons 2 4

Cálcio (Ca):
Número atômico = 20

Nível (n) 1 2 3 4
Camada K L M N
Máximo de elétrons 2 8 8 2

Subníveis de Energia – Diagrama de Linus Pauling

O modelo de Bohr não corresponde com a realidade do que ocorre com a entrada de elétrons nos níveis de energia da eletrosfera. Através de estudos quânticos, Linus Pauling criou um diagrama que facilita o entendimento de como os elétrons ocupam os orbitais. Normalmente os elétrons ocupam quatro principais orbitais eletrônicos que são identificados pelas letras spd e pela letra f, em ordem crescente de energia. Para cada nível de energia (n= 1 a 7), existem os subníveis de energia que estão diretamente ligados a um dos orbitais. Este método foi criado pelo físico alemão Erwin Madelung e aperfeiçoado por Linus Pauling, por esse motivo, na literatura é comum citar somente o diagrama de Linus Pauling, ou apenas diagrama de Pauling.

Quando um elétron está localizado no nível 1 por exemplo, representa-se o mesmo como 1s, pois este encontra-se no nível 1 e no orbital s, e assim sucessivamente com os demais níveis e orbitais.

O princípio básico do diagrama de Linus Pauling consiste em facilitar o entendimento de como os elétrons se distribuem nos níveis e subníveis de energia até a sua camada de valência.

A camada de valência é a que acomoda os elétrons com maior energia, que são responsáveis pela ocorrência das reações químicas, pois os elétrons contidos nela estão instáveis e buscando outros elétrons para que possam se tornar estáveis conforme a Teoria do Octeto.

Como vimos anteriormente, os átomos comumente ocupam 7 níveis de energia, cada nível com seus subníveis associados ao tipo de orbital em que o elétron se encaixa. Cada orbital possui no máximo dois elétrons, por esse motivo, eles podem ser distribuídos nos subníveis de energia.

Subnível s p d f
Número de orbitais por subnível 1 2 5 7
Número máximo de elétrons 2 6 10 14

Vejamos abaixo o esquema de como funciona o diagrama de Pauling, que permite realizar a distribuição eletrônica de todos os elementos químicos da tabela periódica e em seguida alguns exemplos de como realizar a distribuição eletrônica utilizando esse modelo. Para compreender o diagrama, é preciso primeiramente entender a simbologia presente nele:

http://www.infoescola.com/wp-content/uploads/2007/08/distribuicao-eletronica2.jpg

http://www.infoescola.com/wp-content/uploads/2007/08/diagrama-de-pauling.jpg

Diagrama de Pauling

Desse modo temos a sequência energética da seguinte maneira:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p67s2 5f14 6d10 7p6

Vejamos agora um exemplo prático de como aplicar o diagrama de Pauling com alguns elementos químicos:

Rubídio (Rb):

32Rb = 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1

Camada de Valência: 5s1 – 1 elétron na última camada

Titânio (Ti):

22Ti = 1s2 2s2 2p6 3s2 3p6 4s2 3d2

Camada de Valência: 3d2 – 2 elétrons na última camada

Sódio (Na):

11Na = 1s2 2s2 2p6 3s1

Camada de Valência: 3s1 – 1 elétron na última camada

Cálcio (Ca):

20Ca = 1s2 2s2 2p6 3s2 3p6 4s2

Camada de Valência: 4s2 – 2 elétrons na última camada

Para íons também podemos utilizar o diagrama de Pauling para realizar a distribuição eletrônica:

Cálcio (Ca2+):

20Ca2+ = 1s2 2s2 2p6 3s2 3p6

Camada de Valência: 3s2 e 3p6 – 8 elétrons na última camada

Flúor (F):

9F = 1s2 2s2 2p6

Camada de Valência: 2s2 e 2p6 – 8 elétrons na última camada

Cloro (Cl):

17Cl- = 1s2 2s2 2p6 3s2 3p6

Camada de Valência: 3s2 e 3p6 – 8 elétrons na última camada

Conforme podemos observar nos exemplos acima, quando realizamos a distribuição eletrônica de íons, partimos da distribuição do elemento químico em seu estado neutro, ou seja, partimos do átomo neutro e depois acrescentamos ou retiramos os elétrons de acordo com a carga do íon, desse modo, para cátions (elemento que perdeu elétron (s), portanto com carga positiva) retiramos a quantidade de elétrons de acordo com a carga do íon e para ânions (elemento que ganhou elétron (s), portanto com carga negativa) acrescentamos a quantidade de elétrons de acordo com a carga do íon.

Na tabela periódica os elementos são agrupados de acordo com suas propriedades, e considerando que a distribuição eletrônica é feita com base no preenchimento dos orbitais, podemos representar que a tabela periódica é dividida da seguinte forma:

http://www.infoescola.com/wp-content/uploads/2007/08/tabela-periodica-orbitais-600x398.png

Conclusão:

Com os aperfeiçoamentos feitos na Tabela Periódica ao longo dos anos, e com o aumento de elementos químicos conhecidos, passou-se a utiliza-la de modo a prever o comportamento dos elementos nela contidos no que diz respeito às suas propriedades e características, contudo, existem exceções, tornando a tabela falível nas previsões de propriedades desses elementos. Por esse motivo iniciou-se estudos quânticos relacionados aos elementos, os átomos e principalmente sobre o posicionamento dos elétrons na eletrosfera.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

BAIXE O TRABALHO AQUI

Latest articles

Trabalhos Relacionados